

Factors affecting the spread of BVDV in Ireland

David Graham

BVDZero Cowbridge | 3rd July 2019

Progress-animal/herd level (%)

KEY CHALLENGE: RETENTION

animal and herd-level risk factors during the compulsory eradication programme in Ireland TIONAL BVD ERADICATION PROGRAMME

T.A. Clegg^{a,*}, D.A. Graham^b, P. O'Sullivan^c, G. McGrath^a, S.J. More^a

Impact of retention-within herd

Month of removal

Risk factor		Category	P ²⁴	he	OR	95% CI Lower	Upper
Log herd size Date (quarter/ye	ear) last BVD+ calf left the herd ^e	No known BVD+ in 2012 January-March 2012 April-June 2012 July-September 2012 October-December 2012	<0.001 Referent 0.038 <0.001 <0.001 <0.001	<0.001 <0.001	1.95 1.52 1.88 4.46 4.61	1.71 1.01 1.37 2,41 2.95	2.23 2.22 2.56 8.13 7.10
	FLSFVIER	Preventive Vete	rinary Medi	cine //prevetmed			
	Influence of the re- voluntary phase of (BVDV) eradication	tention of PI calves ide T the Irish national bovi n programme on herd-	ntified in 20 ine viral diar level outcon	12 during t rhoea viru: nes in 2013	the 🚺	CrossMark	
	D.A. Graham ^{a,*} , T.A. Cle	gg ^b , P. O'Sullivan ^c , S.J. More ¹	1				

IBM: IRISH BVD MODEL

IBM: IRISH BVD MODEL

Prompt testing of all calves to identify minority of PIs Prompt removal of identified PIs

Time (days) from birth to test

Comparing data from January until 30th April 2018 and 2019.

- **2018**: Average days **16.8** (minimum -4, maximum 105)
- **2019**: Average days **11.7** (minimum -26, maximum 119)

Time (days) from +test to removal

Comparing data for animals which had an initial test and were removed between 1st January and 30th April of 2018 and 2019.

	2018	2019
Median	12	6

Neighbour risk

- Aim: to estimate the risk of a herd having BVD-positive calves in January to June 2014 when <u>contiguous</u> to a herd that had at least one BVD positive calf born in 2013.
- Outcome:
 - Positive contiguous neighbour increased risk ~two-fold
 - (herd size, purchase, location, animals of unknown status)
 - PATHWAY?
 - Neighbour notification

HERD INVESTIGATIONS (TASAH)

Determine time period when each calf was exposed in

Determine the location of the exposure

Investigate potential sources of exposure a. within herd source b. source external to herd

Review biosecurity and make recommendations

FIRST STEP

SECOND STEP

to prevent re-exposure

04

- Trained vets
- Funded through Rural Development Plan
- Goals:
 - Identify plausible source(s)
 - Ensure herd is left BVD-free
 - Biosecurity recommendations

NATIONAL BVD ERADICATION PROGRAMME

DFree

Animal Health Ireland

2018- plausible sources identified

REVIEW BIOSECURITY, IDENTIFY SOURCE AND MAKE RECOMMENDATIONS TO PREVENT RE-EXPOSURE

Section 10

Result of herd investigation

Q55. Based on the herd investigation and biosecurity review, have you identified a plausible source or sources of SVDV vina responsible for the Pts in this herd?

Response	Beef	Dairy	Dual	Unknown/Other	Grand Total
No	80	109	15	0	204
Yes	294	204	56	0	554
Total	374	313	71	0	75.0
liesponse	Beef	Dairy	Dual	Unknown/Other	Grand Total
No	21%	35%	21%	0%	27%
Yes	79%	65%	79%	0%	73%
Total	100%	100%	100%	0%	100%

Potential sources per herd

	Section 1	0			
	Result of herd inv	estigation			
	Number of sources identified	per herd, by herd ty	per .		
Response	Beaf	Deiry	Dual	Unknown/Other	Grand Total
0	81	110	15	0	206
1	168	110	25	0	323
2	50	50	14	0	114
3	27	23	6	0	56
×8	28	20	11	0	59
Total	374	313	n	0	758
Response	Beef	Dairy	Dual	Unknown/Other	Grand Total
0	22%	35%	21%	096	27%
1	50%	35%	35%	096	43%
2	13%	16%	20%	096	15%
3	7%	7%	8%	096	7%
>3	78	6%	15%	0%	8%
Total	100%	100%	100%	0%	100%

Frequency of sources of exposure

Source Identified - Within Herd	Beef	Dairy	Dual	Unknown/Other	Total
Previously identified PI: known PI retained in herd	52	28	6	0	86
Unidentified PE Animal whose status was not previously known that					1
was found to be PI during the investigation	2	6	0	U	15
Unidentified Pl: Animal present during WOS whose status was					
unknown and which left the herd without being tested	0	3	-	U	10
introduced TI animal	81	60	21	0	162
frojan birth	70	18	13	0	101
False negative: animal with a NEGATIVE status that was found to be					
PI during investigation	12	4	1	u	1/
Other species - Sheep	12	2	6	0	20
Other species - Goats	1	0	3	0	-4
Other species - Alpaca	1	0	0	0	1
Other species - Llama	0	0	0	0	0
Other species - Deer	4	3	0	0	7
fotal	246	132	53	ø	431
source Identified - Outside Herd	Beef	Dairy	Dual	Unknown/Other	Total
Direct contact - Boundary contact	95	92	19	0	206
Direct contact - Shared grazing	4	2	0	0	6
Direct contact - Returning cattle (TI)	20	18	4	0	42
ndirect contact - Herdowner	57	43	22	0	122
indirect contact - Other personnel	42	58	11	0	111
Indirect contact - Small equipment	17	5	1	0	23
ndirect contact - Large equipment	23	16	11	0	50
ndirect contact - Shared facilities	8	6	2	0	16
Fotal	266	240	70	D	576
2 10 224 4					

NHS Risk factor study

- ~72,000 herds with NHS at end of 2017
- 546 herds lost NHS during 2017, due to the birth of one or more PI calves.
- Given prior NHS
 - Introduction of infection from outside herd
 - Unidentified source of infection within the herd / establishment
- **Case herds** NHS on Jan 1st 2017, but lost that status in 2017, due to the disclosure of a BVD virus positive animal.
- **Control herds** had NHS on Jan 1st 2017, and retained that status in 2017. A total of 2192 control herds were randomly selected (a ratio of 4 controls to cases).
- (Dr. Damien Barrett, DAFM)

Outcomes:

- Previous history of BVD*
 - Most significant in the year preceding the awarding of NHS (OR 23)
 - Residual infection within herd or management practices?
- Mortality levels*
 - Increased calf mortality in 2017 (OR 3)
- Herd size*
 - Odds of NHS loss in herds > 131 almost 4 times that of a herd < 20 cattle
- Herd expansion*
 - Herds that increased by ≥9 cows between 2013 and 2017 OR 1.75 times that of herd where there was no increase in numbers
- Purchase*
 - Purchase of pregnant female increased odds by 2.2 for each animal purchased
 - BUT overall purchase did not emerge as a significant issue
- PI Density*
 - Increased density of PIs within 10 km of the herd in the previous year
- **Co-grazing with sheep** (NS)

Trojan dams

- 29,422 BVD+ birth events 2013-2015
- % trojan:
 - Overall- 8.6%; 2013- 7.1%; 2014- 9.2%; 2015- 10.6%
 - Herds (one or more trojan births)
 - 2013- 9.9%; 2014- 11.8%; 2015- 13.3%
- Risk factors for trojan birth:
- Herd type: Dairy < beef (7.0% to 9.5%)
- herd size
- Dam parity
 - 1- 14.7%
 - 2 5.5%
 - 3 4.8%
 - 4+- 4.0
- Risk factor for selling trojan dam
 - Selling two or more pregnant females
 - >2 BVD+ animals in the herd

Quantifying the role of Trojan dams in the between-herd spread of bovine viral diarrhoea virus (BVDv) in Ireland

Fiona Reardon^{a,}, David A. Graham^b, Tracy A. Clegg^a, Jamie A. Tratalos^a, Padraig O'Sullivan^c, Simon J. More^a

Trojan dams- impact of control measures

- **Effectiveness** of movement restrictions for varying periods following the removal of PI animals from infected herds in preventing Trojan births in other herds.
- Control measure 1 (CM_1): Herds are restricted and <u>eligible animals</u>
 <u>(female >12 months)</u> are unable to move while any BVD+ animal is in the herd.
- CM_2: 4 months (120 days)
- CM_3: 9 months (270 days)
- CM_4: 12 months (365 days)

Effectiveness

Control measures' Herd type ^b All herds Dairy Beef Dual Number of movements of Trojan dams that would have been prevented CM_1 78 66 6 147 Number (and %) of Trojan dams (n = 747) that would have been prevented from moving from the first source herd containing one or more BVD + animals du pregnancy ^c 137 (18.3) CM_1 65 (23.9) 66 (17.4) 6 (6.3) 137 (18.3) CM_2 96 (35.3) 104 (27.4) 25 (26.3) 225 (30.1) CM_3 111 (40.8) 135 (35.5) 27 (28.4) 273 (36.5) CM_4 114 (41.9) 135 (35.5) 27 (28.4) 279 (37.3) number (%) that calved within 9 months of movement CM_1 2.282 (13.2) 1060 (11.9) 666 (17.2) 3979 (13.3) CM_2 4.665 (14.7) 234 (12.2) 1215 (nes) 8206 (14.1) 279 (37.3) number (%) that calved within 9 months of movement CM_1 2.282 (13.2) 1060 (11.9) 666 (17.2) 3979 (13.3) CM_2 4.665 (14.7) 2394 (12.2) 1215 (nes) 8206 (14.1)	_						_	
Dairy Beef Dual Number of movements of Trojan dams that would have been prevented CM_1 78 66 6 147 Aumber (and %) of Trojan dams (n = 747) that would have been prevented from moving from the first source herd containing one or more BVD + animals du pregnancy ⁶ 137 (18.3) CM_1 65 (23.9) 66 (17.4) 6 (6.3) 137 (18.3) CM_2 96 (35.3) 104 (27.4) 25 (26.3) 225 (30.1) CM_3 111 (40.8) 135 (35.5) 27 (28.4) 273 (36.5) CM_4 114 (41.9) 135 (35.5) 27 (28.4) 279 (37.3) number (%) that calved within 9 months of movement CM_1 2,282 (13.2) 1060 (11.9) 666 (17.2) 3979 (13.3) CM_2 4,665 (14.7) 2394 (12.2) 1215 (16.8) 8206 (14.1) 279 (37.3) Number (%) that calved within 9 months of movement CM_1 8,274 (16.0) 5384 (13.0) 2331 (18.2) 15,763 (15.1) Number (%) of herds with at least one Trojan birth in 2015 (n = 535) where all Trojan births would have been prevented ⁶¹ 23 (16.7) 51 (15.5) 3 (4.5) 77 (14.4) Number (%) of h		Control measures ^a	Herd type ^b			All herds		
Number of movements of Trojan dams that would have been prevented CM_1 78 66 147 Number (and %) of Trojan dams (n = 747) that would have been prevented from moving from the first source herd containing one or more BVD + animals du pregnancy ^c CM_1 65 (23.9) 66 (17.4) 6 (6.3) 137 (18.3) CM_1 65 (23.9) 66 (17.4) 6 (6.3) 137 (18.3) CM_1 65 (23.9) 66 (17.4) 6 (6.3) 137 (18.3) CM_2 96 (35.3) 104 (27.4) 25 (26.3) 225 (30.1) CM_1 (41.4 (11.4 (41.9) 135 (35.5) 27 (28.4) 279 (37.3) number (%) that calved within 9 months of movement CM_1 2282 (13.2) 1060 (11.9) 666 (17.2) 3979 (13.3) CM_2 4665 (14.7) 2394 (12.2) 1215 (16.8) <th colsp<="" th=""><th></th><th></th><th>Dairy</th><th>Beef</th><th>Dual</th><th></th><th></th></th>	<th></th> <th></th> <th>Dairy</th> <th>Beef</th> <th>Dual</th> <th></th> <th></th>			Dairy	Beef	Dual		
CM1 78 66 6 147 Number (and %) of Trojan dams (n = 747) that would have been prevented from moving from the first source herd containing one or more BVD + animals du pregnancy ^c CM_1 65 (23.9) 66 (17.4) 6 (6.3) 137 (18.3) CM_2 96 (35.3) 104 (27.4) 25 (26.3) 225 (30.1) CM_3 111 (40.8) 135 (35.5) 27 (28.4) 273 (36.5) CM_4 114 (41.9) 135 (35.5) 27 (28.4) 279 (37.3) number (%) that calved within 9 months of movement CM_1 2.282 (13.2) 1060 (11.9) 666 (17.2) 3979 (13.3) CM_2 4,665 (14.7) 2394 (12.2) 1215 (16.8) 8206 (14.1) CM_3 7,049 (16.3) 4318 (13.2) 2024 (18.2) 13,240 (15.4) CM_4 8,274 (16.0) 5384 (13.0) 233 (18.2) 15,763 (15.1) Number (%) of herds with at least one Trojan birth in 2015 (n = 535) where all Trojan births would have been prevented ^d CM_1 23 (16.7) 51 (15.5) 3 (4.5) 77 (14.4) Mumber (%) of herds with at least one BVD + birth in 2015 (n = 4251) where a BVD + births would have been prevented ^{d^c} . 63 (1.5) 63 (1.5) 63 (1.5)		Number of moveme	ents of Trojan o	lams that would l	have been preve	nted	-	
Number (and %) of Trojan dams (n = 747) that would have been prevented from moving from the first source herd containing one or more BVD + animals du pregnancy ⁶ M_1^1 65 (23.9) 66 (17.4) 6 (6.3) 137 (18.3) M_2^2 96 (35.3) 104 (27.4) 25 (26.3) 225 (30.1) M_3^3 111 (40.8) 135 (35.5) 27 (28.4) 273 (36.5) M_4^4 114 (41.9) 135 (35.5) 27 (28.4) 279 (37.3) number (%) that calved within 9 months of movement (M_1 2,282 (13.2) 1060 (11.9) 666 (17.2) 3979 (13.3) (M_1 2,282 (13.2) 1060 (11.9) 666 (17.2) 3979 (13.3) 279 (37.3) number (%) that calved within 9 months of movement (M_1 2,282 (13.2) 1060 (11.9) 666 (17.2) 3979 (13.3) (M_2 4,665 (14.7) 2394 (12.2) 1215 (16.8) 8206 (14.1) 8206 (14.1) (M_3 7,049 (16.3) 4318 (13.2) 2024 (18.2) 13,240 (15.4) 13,240 (15.4) (M_4 8,274 (16.0) 5384 (13.0) 2331 (18.2) 15,763 (15.1) 130 mbit his would have been prevented ⁴ 20.4 21.5763 (15.1) Number (%) of herds with at leas		CM_1	78	66	6	147		
moving from the first source herd containing one or more BVD + animals du pregnancy ^c M_1 65 (23.9) 66 (17.4) 6 (6.3) 137 (18.3) M_2 96 (35.3) 104 (27.4) 25 (26.3) 225 (30.1) M_3 111 (40.8) 135 (35.5) 27 (28.4) 273 (36.5) M_4 114 (41.9) 135 (35.5) 27 (28.4) 279 (37.3) number (%) that calved within 9 months of movement CM_1 2,282 (13.2) 1060 (11.9) 666 (17.2) 3979 (13.3) CM_1 2,282 (13.2) 1060 (11.9) 666 (17.2) 3979 (13.3) cM_2 4,665 (14.7) 2394 (12.2) 1215 (16.8) 8206 (14.1) CM_2 4,665 (14.7) 2394 (12.2) 13,240 (15.4) CM_4 8,274 (16.0) 5384 (13.0) 2331 (18.2) 15,763 (15.1) Number (%) of herds with at least one Trojan birth in 2015 (n = 535) where all Trojan births would have been prevented ⁴ CM_1 23 (16.7) 51 (15.5) 3 (4.5) 77 (14.4) M_1 15 (1.0) 46 (2.0) 2 (0.5) 63 (1.5)	Number (and	1 %) of Trojan	dams (n =	= 747) that	would hav	e been prev	ented from	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	moving I pregnance	from the first :	source her	d containing	g one or m	ore BVD + a	mimals dur	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CM_1	65 (2	3.9)	66 (17.4)	6 (6.3) 13	7 (18.3)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CM_2	96 (3	5.3)	104 (27.4)	25 (20	5.3) 22	5 (30.1)	
$\frac{2M_4}{114 (41.9)} \frac{135 (35.5)}{135 (35.5)} \frac{27 (28.4)}{279 (37.3)} \frac{279 (37.3)}{279 (37.3)}$ number (%) that calved within 9 months of movement $\frac{CM_1}{2,282 (13.2)} \frac{2,282 (13.2)}{1060 (11.9)} \frac{1060 (17.2)}{666 (17.2)} \frac{3979 (13.3)}{3979 (13.3)}$ $\frac{CM_2}{2} \frac{4,665 (14.7)}{2394 (12.2)} \frac{2394 (12.2)}{1215 (16.8)} \frac{13,240 (15.4)}{8206 (14.1)}$ $\frac{CM_4}{2} \frac{8,274 (16.0)}{5384 (13.0)} \frac{2331 (18.2)}{2331 (18.2)} \frac{15,763 (15.1)}{15,763 (15.1)}$ Number (%) of herds with at least one Trojan birth in 2015 (n = 535) where all Trojan births would have been prevented ^d } $\frac{CM_1}{23 (16.7)} \frac{23 (16.7)}{51 (15.5)} \frac{3 (4.5)}{3 (4.5)} \frac{77 (14.4)}{77 (14.4)}$ Number (%) of herds with at least one BVD + birth in 2015 (n = 4251) where a BVD + births would have been prevented ^{edf} } $\frac{2M_1}{15 (1.0)} \frac{15 (1.0)}{46 (2.0)} \frac{2 (0.5)}{2 (0.5)} \frac{63 (1.5)}{100}$	CM_3	111 (40.8)	135 (35.5)	27 (28	3.4) 27	3 (36.5)	
number (%) that calved within 9 months of movement CM_1 2,282 (13.2) 1060 (11.9) 666 (17.2) 3979 (13.3) CM_2 4,665 (14.7) 2394 (12.2) 1215 (16.8) 8206 (14.1) CM_3 7,049 (16.3) 4318 (13.2) 2024 (18.2) 13,240 (15.4) CM_4 8,274 (16.0) 5384 (13.0) 2331 (18.2) 15,763 (15.1) Number (%) of herds with at least one Trojan birth in 2015 (n = 535) where all Trojan births would have been prevented ^d CM_1 23 (16.7) 51 (15.5) 3 (4.5) 77 (14.4) Number (%) of herds with at least one BVD + birth in 2015 (n = 4251) where a BVD + births would have been prevented ^{e_1} CM_1 15 (1.0) 46 (2.0) 2 (0.5) 63 (1.5)	CM_4	114 (41.9)	135 (35.5)	27 (28	3.4) 27	9 (37.3)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		number (%) that	at calved within	n 9 months of mo	ovement			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		CM_1	2,282 (13.2)	1060 (11.9)	666 (17.2)	3979 (13.3)		
$\begin{array}{ccccc} CM_3 & 7,049 \ (16.3) & 4318 \ (13.2) & 2024 \ (18.2) & 13,240 \ (15.4) \\ CM_4 & 8,274 \ (16.0) & 5384 \ (13.0) & 2331 \ (18.2) & 15,763 \ (15.1) \\ Number \ (\%) of herds with at least one Trojan birth in 2015 \ (n = 535) \ where all Trojan \\ births would have been prevented d \\ CM_1 & 23 \ (16.7) & 51 \ (15.5) & 3 \ (4.5) & 77 \ (14.4) \end{array}$ Number \ (\%) of herds with at least one BVD + birth in 2015 \ (n = 4251) \ where a BVD + births would have been prevented d c \\ BVD + births \ would have been prevented d c \\ M_1 & 15 \ (1.0) & 46 \ (2.0) & 2 \ (0.5) & 63 \ (1.5) \\ \end{array}		CM_2	4,665 (14.7)	2394 (12.2)	1215 (16.8)	8206 (14.1)		
$\begin{array}{cccc} CM_4 & 8,274 \ (16.0) & 5384 \ (13.0) & 2331 \ (18.2) & 15,763 \ (15.1) \\ Number (\%) of herds with at least one Trojan birth in 2015 \ (n = 535) \ where all Trojan \\ births would have been preventedd \\ CM_1 & 23 \ (16.7) & 51 \ (15.5) & 3 \ (4.5) & 77 \ (14.4) \end{array}$ Number (%) of herds with at least one BVD + birth in 2015 \ (n = 4251) \ where a BVD + births would have been prevented ^{e.t} \\ M_1 & 15 \ (1.0) & 46 \ (2.0) & 2 \ (0.5) & 63 \ (1.5) \\ M_1 & 0 \ (1.5) & 0 \ (1		CM_3	7,049 (16.3)	4318 (13,2)	2024 (18.2)	13,240 (15.4)		
Number (%) of herds with at least one Trojan birth in 2015 (n = 535) where all Trojan births would have been prevented ^d CM_1CM_123 (16.7)51 (15.5)3 (4.5)77 (14.4)Number (%) of herds with at least one BVD + birth in 2015 (n = 4251) where a BVD + births would have been prevented ^{e,t} 63 (1.5)CM_115 (1.0)46 (2.0)2 (0.5)63 (1.5)		CM_4	8,274 (16.0)	5384 (13.0)	2331 (18.2)	15,763 (15.1)		
CM_1 23 (16.7) 51 (15.5) 3 (4.5) 77 (14.4) Number (%) of herds with at least one BVD + birth in 2015 (n = 4251) where a BVD + births would have been prevented ^{e.t} 63 (1.5) CM_1 15 (1.0) 46 (2.0) 2 (0.5) CM_2 20 (1.0) 63 (1.5)		Number (%) of here births would ha	is with at least ave been preven	one Trojan birth i nted ^d	in 2015 (n = 53	5) where all Troja	n	
Number (%) of herds with at least one BVD + birth in 2015 (n = 4251) where aBVD + births would have been prevented ^{e,r} M_1 15 (1.0)46 (2.0)2 (0.5)63 (1.5)	1	CM_1	23 (16.7)	51 (15.5)	3 (4.5)	77 (14.4)		
BVD + births would have been prevented ^{e,t} $2M_1$ 15 (1.0) 46 (2.0) 2 (0.5) 63 (1.5)	Number (%)	of herds with	at least or	ne BVD + b	irth in 201	5 (n = 425	1) where all	
M_1 15 (1.0) 46 (2.0) 2 (0.5) 63 (1.5)	BVD + b	would h	ave been p	preventeder			\frown	
	CM_1	15 (1	.0)	46 (2.0)	2 (0.5	6	3 (1.5)	
M_2 29 (1.9) 67 (2.9) 11 (3.0) 107 (2.5)	CM_2	29 (1	.9)	67 (2.9)	11 (3	.0) 1	07 (2.5)	
M_3 35 (2.3) 91 (3.9) 13 (3.5) 139 (3.3)	CM_3	35 (2	.3)	91 (3.9)	13 (3	.5) 1	39 (3.3)	
M 4 36 (2.3) 91 (3.9) 14 (3.8) 141 (3.3)	CM 4	36 (2	.3)	91 (3.9)	14 (3	.8) 1	41 (3.3)	
	-						- /	

Imports (2018)

Conclusions

- Prompt identification and removal of PIs critical to maximizing progress
 - Facilitate within and between herd spread
 - Range of measures have contributed to ongoing improvements in both
- Prohibition on movement of un-tested, suspect and positive animals addresses previous greatest risk (biosecurity)
- Previously less important pathways become proportionately more important
- Attention to these other direct and indirect pathways critical
- Benefits beyond BVD

ACKNOWLEDGEMENTS

- BVD Implementation Group
- BVD Technical Working Group
- Centre for Veterinary Epidemiology and Risk Analysis
- Irish Cattle Breeding Federation
- Dr. Hans-Herman Thulke
- BVD Helpdesk
- DAFM and VLS
- www.animalhealthireland.ie

